Psicothema was founded in Asturias (northern Spain) in 1989, and is published jointly by the Psychology Faculty of the University of Oviedo and the Psychological Association of the Principality of Asturias (Colegio Oficial de Psicología del Principado de Asturias).
We currently publish four issues per year, which accounts for some 100 articles annually. We admit work from both the basic and applied research fields, and from all areas of Psychology, all manuscripts being anonymously reviewed prior to publication.
María J. Blanca1, Rafael Alarcón1, Jaume Arnau2, Roser Bono2 and Rebecca Bendayan1,3
Background: The robustness of F-test to non-normality has been studied from the 1930s through to the present day. However, this extensive body of research has yielded contradictory results, there being evidence both for and against its robustness. This study provides a systematic examination of F-test robustness to violations of normality in terms of Type I error, considering a wide variety of distributions commonly found in the health and social sciences. Method: We conducted a Monte Carlo simulation study involving a design with three groups and several known and unknown distributions. The manipulated variables were: Equal and unequal group sample sizes; group sample size and total sample size; coefficient of sample size variation; shape of the distribution and equal or unequal shapes of the group distributions; and pairing of group size with the degree of contamination in the distribution. Results: The results showed that in terms of Type I error the F-test was robust in 100% of the cases studied, independently of the manipulated conditions.
Datos no normales: ¿es el ANOVA una opción válida? Antecedentes: las consecuencias de la violación de la normalidad sobre la robustez del estadístico F han sido estudiadas desde 1930 y siguen siendo de interés en la actualidad. Sin embargo, aunque la investigación ha sido extensa, los resultados son contradictorios, encontrándose evidencia a favor y en contra de su robustez. El presente estudio presenta un análisis sistemático de la robustez del estadístico F en términos de error de Tipo I ante violaciones de la normalidad, considerando una amplia variedad de distribuciones frecuentemente encontradas en ciencias sociales y de la salud. Método: se ha realizado un estudio de simulación Monte Carlo considerando un diseño de tres grupos y diferentes distribuciones conocidas y no conocidas. Las variables manipuladas han sido: igualdad o desigualdad del tamaño de los grupos, tamaño muestral total y de los grupos; coeficiente de variación del tamaño muestral; forma de la distribución e igualdad o desigualdad de la forma en los grupos; y emparejamiento entre el tamaño muestral con el grado de contaminación en la distribución. Resultados: los resultados muestran que el estadístico F es robusto en términos de error de Tipo I en el 100% de los casos estudiados, independientemente de las condiciones manipuladas.