INFORMATION

Psicothema was founded in Asturias (northern Spain) in 1989, and is published jointly by the Psychology Faculty of the University of Oviedo and the Psychological Association of the Principality of Asturias (Colegio Oficial de Psicología del Principado de Asturias).
We currently publish four issues per year, which accounts for some 100 articles annually. We admit work from both the basic and applied research fields, and from all areas of Psychology, all manuscripts being anonymously reviewed prior to publication.

PSICOTHEMA
  • Director: Laura E. Gómez Sánchez
  • Frequency:
         February | May | August | November
  • ISSN: 0214-9915
  • Digital Edition:: 1886-144X
CONTACT US
  • Address: Ildelfonso Sánchez del Río, 4, 1º B
    33001 Oviedo (Spain)
  • Phone: 985 285 778
  • Fax: 985 281 374
  • Email:psicothema@cop.es

Psicothema, 2007. Vol. Vol. 19 (nº 4). 673-678




Comparación de la potencia de nuevos enfoques para analizar datos de medidas repetidas

Pablo Livacic-Rojas, Guillermo Vallejo* y Paula Fernández*

Universidad de Santiago de Chile y * Universidad de Oviedo

Este trabajo compara la sensibilidad de cinco modernas técnicas analíticas para detectar los efectos de un diseño de medidas parcialmente repetidas cuando se incumplen los supuestos del tradicional enfoque ANOVA, a saber: el enfoque del modelo mixto ajustado mediante el módulo Proc Mixed del SAS, el enfoque Boostrap-F, el enfoque multivariado de Brown-Forsythe, el enfoque multivariado de Welch-James y el enfoque multivariado de Welch-James con estimadores robustos. Con anterioridad, Livacic-Rojas, Vallejo y Fernández habían descubierto que los métodos examinados aquí eran comparables en términos de sus tasas de error Tipo I. Los resultados obtenidos sugieren que tanto el enfoque del modelo mixto como los enfoques de Brown-Forsythe y Welch-James controlaban satisfactoriamente las tasas de error de Tipo II correspondientes a los efectos principales de las ocasiones de medida bajo la mayoría de las condiciones evaluadas.

Power comparison of new tests to analyze repeated measures data. This work compares the sensitivity of five modern analytical techniques for detecting the effects of a design with measures which are partially repeated when the assumptions of the traditional ANOVA approach are not met, namely: the approach of the mixed model adjusted by means of the SAS Proc Mixed module, the Bootstrap-F approach, the Brown-Forsythe multivariate approach, the Welch-James multivariate approach and Welch-James multivariate approach with robust estimators. Previously, Livacic-Rojas, Vallejo and Fernández found out that these methods are comparable in terms of their Type I error rates. The results obtained suggest that the mixed model approach, as well as the Brown-Forsythe and Welch-James approaches, satisfactorily controlled the Type II error rates corresponding to the main effects of the measurement occasions under most of the conditions assessed.

PDF

Impact Factor JCR SSCI Clarivate 2023 = 3.2 (Q1) / CiteScore SCOPUS 2023 = 6.5 (Q1)